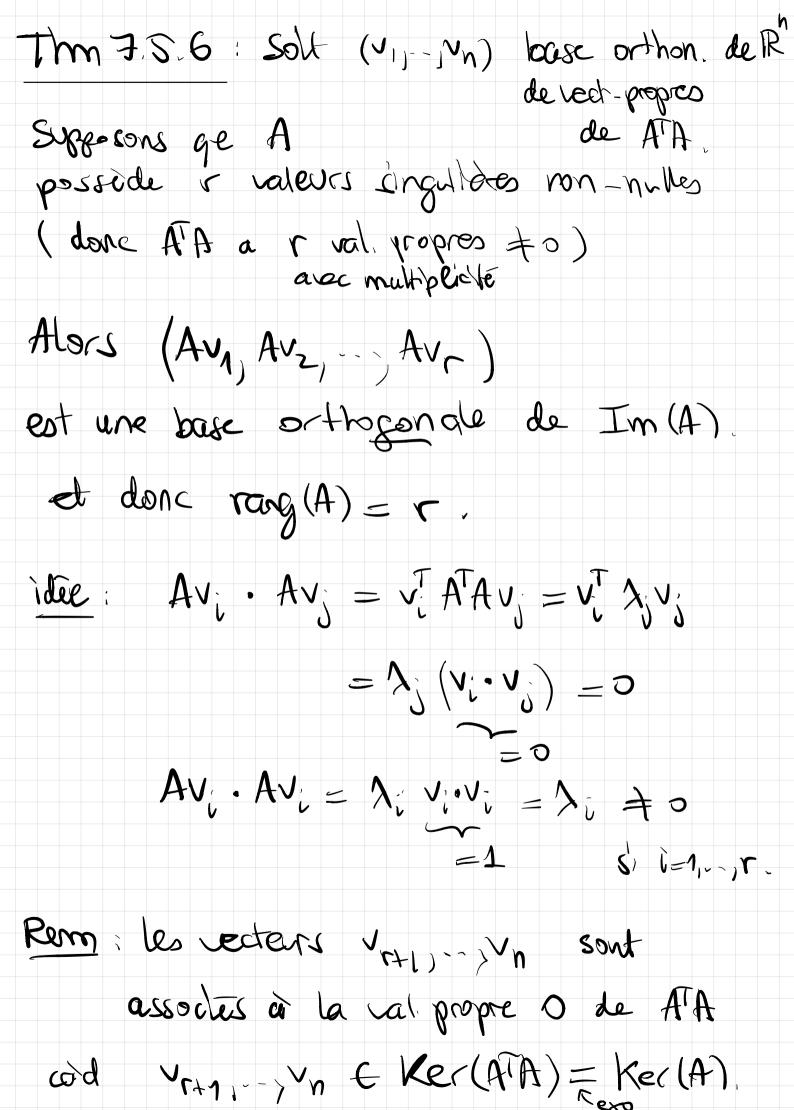
Gus 142 Errata (sur les forres quadratiques) 1912.24 Dans Def 7.3.1: Pour A=AT matrice symptoxin on dit que qu'est non-dégérèree s A) xTAy =0 HyERn implige x =0 (cela significe que o est le seul recteur qu'il est)
A-orthogonal à tous les recteurs de Rh) B) On dit que que est isotrope, s'il existe XER X to tel que que que (donc est Axzo) Rom. 1) 9A van dégénérée &D A inversible 0 n'est pas valeur &D Ker (A) = 50 Rn) propre de A 2) 9A isotrope &D von definie (val propres 20 el <0) (sur R) pla dégérèrée de proje est femble : A=(0-1) ron dégérèrée mais x = (1) on a (11)(10)(1) = (11)(1)

Rappel: A EM (TR) TA IRM STRM

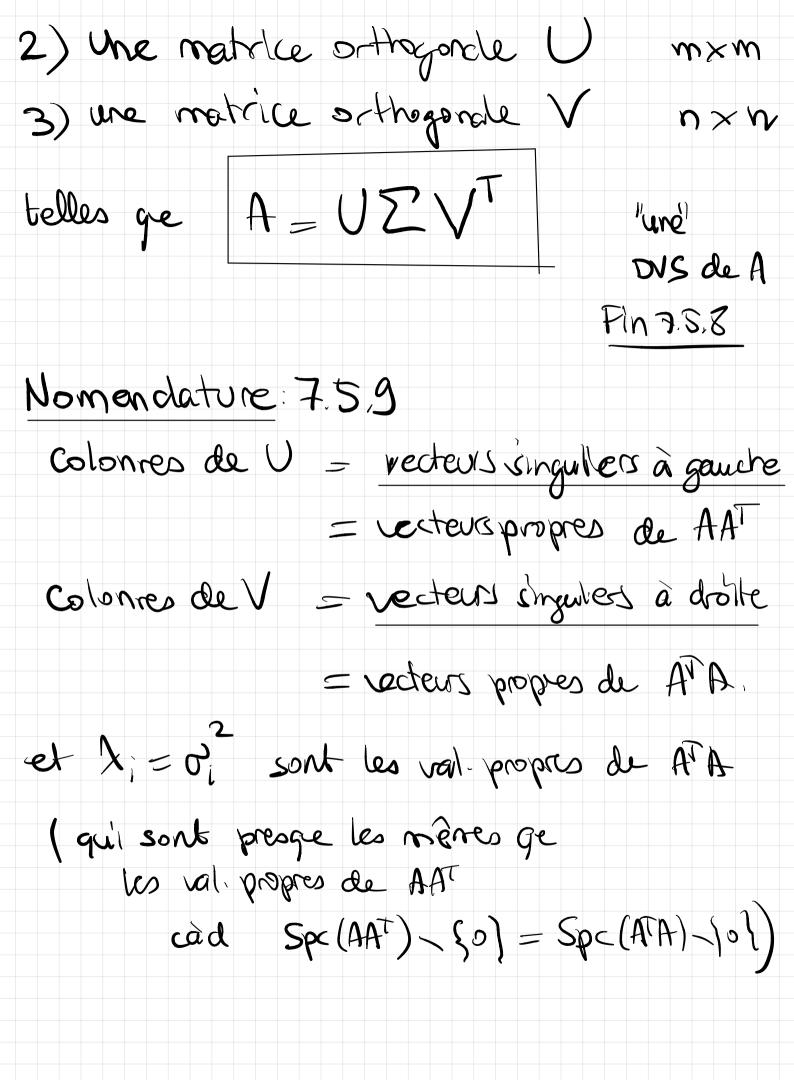
20 F3 ADC On étudie l'effet de A sur on a ge $\max |Ax|^2 = \max Ax \cdot Ax$ $\times \in C$ $\times \in C$ $= \max x^{\dagger} A^{\dagger}A x = \max q (x) = x \in C$ $\times \in C$ $\times \in C$ $\times \in C$ t grande val bushes de ATA min $\|Ax\|^2 = + perite$ $x \in C$ rateur propre de ATA On a que ATA est synétrique (et positive)

Diag,	orthog	j. =>	3 ure	DO4C	orthono	rêc	de F
B=	(v ₁)	$ >$ σ_n $)$	cons	htree	de ce	et. p	opes
		de la					
asso (clès	à des	valeurs	800	50)		
	2	15-7 2r	1			(E 1	$R_{+})$
are r	Elentuel Epetable	n)					
Rem.	llA	Vill =					
		= \	TATAV		Ti Vi	V	\(\frac{1}{2}\)
d	anc >	170	7	ν.	,	1	
		ge les			Do_	ATA	
Selon		e dec					
		\ ₁ > \2	- >	$\sum_{n} \lambda_n$	>, 0		
9n e	ppelle	raleu	ns sing	ulièrs	de f	+	
\e) در	$\gamma_{i} = \zeta$	λ_{i}		(11Avi)	11 = 0	ri)



Notation 7.5.7: on each $Z \in M_{m \times n}(\mathbb{R})$ $\frac{D}{D} = \frac{D}{D} = \frac{D}$ DEM (IR) 11-5 Theorème J.S.8 (Existence d'une)

Theorème J.S.8 (Existence d'une) Soit AE Mmxn(R) de rarg = r (r = dim(Im(A))Alors il existe (n-r = dim(Rer(A)))1) Une matrice Z EMmxn (R) comme ci-desses top les coeff diagonaux de D sont repremières vali singulières to de A écrites done l'ordre décrois. 0, > 02 5 -- 5 0, > 0



demo/recette 7.5.10: rang(A)=r On prend les Di et vi valeurs et recteurs propres unitaires de ATA (1) arrorges en ordre decrossent) Donc (v₁, v_n) bon de R b. o. gorale D'après Th 7.5.6 (Au, - , Avr) de Im(A) Posons $u_i = Av_i$ Av_i € Rm MAVOU OC On couplète la famille (u1, ur) en the b.o.n (u1, -, um) de Rm grace à Gram Schmidt On pose alors $U = (u_1 | u_m)$ whate $V = (V_1 | V_1)_{n \times n}$ orthogonale

Calculary
$$AV$$
 $(u_i = \frac{Av_i}{P_i} 4p o_i^2 u_i = Av_i)$
 $AV = (Av_i | Av_2| - | Av_n) = (Av_i | -| Av_r | o | -| o)$
 $= (o_i^2 u_1 | o_2^2 v_2 | -| o_r^2 v_r | o | -| o)$

Posons $D = (o_i^2 o_i^2) | o_r^2 v_r | o | -| o$

Calculary

 $UZ = (u_1 | -| u_m) (o_i^4 o_i^4 o_i$

(Fin 7.5,10)

7.5.11:
$$A = (101) \text{ TA} \quad \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$$
 $\mathbf{r} = 2 = (ang(A))$
 $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}$
 $AAT = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{VP} = 3$
 $AAT = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{VP} = 3$
 $AAT = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{VP} = 3$
 $AAT = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{UP} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
 $AAT = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{UP} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{UP} = \begin{pmatrix} 1 & 1 \\ 1 &$

$$v_3 = \frac{1}{16} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $v_1 = \frac{1}{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $v_0 = \frac{1}{13} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_3 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_1 | v_1 | v_0 \end{pmatrix}$$

$$V = \begin{pmatrix} v_1 | v_1 | v_1 | v_1 | v_1 |$$

3	0, =	121	Où	$\lambda_i =$	val.p	ropre de (non nulle:	A A	
NB	. On	peut (ar coj	pser		- Avi NAvill		
	6	our i=	=1,,r	rang (A	-) =	(cer Av) i \ 0)	
		i= r+1						
		V	1'i E 1	Re((A	-) = K	er (ATA)	$=E_{o}$	
Pro	othizag	Z.E NO	.13					
la	Lons DA	s d'u	10 me	atrice	AE	Tmxr r=ra	(R) ng(A)	
1)	(u1).	· 70r)	b.0.	n de	- In	(A)	= dim (I	inA)
))		
2)	(U(+)	1) ,0	(m)	0.0	de	Ver(f	(T)	
3)	(1)	,V()	b.	0.0	le I	in (AT) At=K)=lgn(A)

	Pih 7:5.13
Morde 7,5,14: Une DVS	donne
dus b.o.n dus 4 espaces	fondavatar de
Im(A), ler(A), Im(A [†])	/le((AT).
$\mathbb{R}^{n} \to \mathbb{R}^{m}$	Im (A) + Ker (AT)
Ke(A) D Im(A ^t)	
Point de vue georetriqe	
orthog. V 1	rotations/sym
rotation R -> RM	

cela nous donne un dernier rajout au Méga-Tréorènne.

Rajort 7.5.15: Soit A E M_{nxn} (IR) (conce) Alors A est invenible 40 $\Delta = \{0\}$ t) Ke(A) = R? u) $lgn(A) = IR^{\gamma}$ v) A possède n val. singulières non nulles w) la force quadratique octo at ATA ac est dépiné positie et von-dégénérée cad et Aty light on produit scalare sur Rn 74 é

Dernière application de l'AL Chaires de Markor discretes systère à nétats possibles Piz (E) Pi3 N=3 P22 P23 agrès temps don a 0 < Pij < 1 grobabilité de passer de Métat E, à Ei artant de $\times(0) \in \mathbb{R}$ $\times(0) = (\times(0))$ Partant de X(0) E PR Etat in had après le unités de temps \times (0), \times (1), \times (h) on a la fomle sulvante

R P puissance k k enher $\chi(k) = P \chi(0)$ etat in that P=matrice de transition EMXn(R) $= (Pij)_{1 \leq i,j \leq n}$ ex: physiqe statistiqe 3 états pour une notécule (p.ex 420) Solide, Maplde, gateux $P = \begin{pmatrix} 0.9 & 0.8 & 0.1 \\ 0.05 & 0.2 & 0.8 \\ 0.05 & 0 & 0.1 \end{pmatrix}$ exà o°c 1 1 1 (donc 1 est up. det)

Thm (Perron-Frobenius)	00 11
	On dit
Sign P (p)	
Sp P=(Pij) +.9	est stationne
(] k EN tel que Pk a des coeff >0)	si Px=x
Alors	vecter
1) I un un'que rectour stationnaire x &	10
	\tilde{a} $\lambda = 1$
2) $\lim_{k\to\infty} P^k = (x - x)$	
k >00	
3) V x(0) Etat inhial on a	
$\lim_{k \to \infty} x(k) = x$	
N->00	
	(S.Brig)
Exemple: Google Rage Rank	L. Page
	<u> </u>
Indice de popularité d'une page nob	~ 1330
Soit N=le nombre de pages web	
crèe une notrice N×N	

supp. une page i possible le lens
alors pose $P_i = \frac{1-9}{k_i} + \frac{9}{N}$ une page liee
page liel
$P_{i} = \frac{q}{N}$ q parametre
(=0,15)
$P = (P_{ij}) \in M_{N \times N}(tR)$
le Page Ronk allue page i
et déphi comme la jère corpointe
du cetar stationnaire de P.
Algorithme d'examen B Gtavi
0) Rester Zen (3)
1) Résoudre questions (restantes) qu'i vous
paralssent les plus imples
2) Morgez/Buvez in petit truc (sucre/eau de rain)
3) Regardent / heure
4) Recommencer à 0) jusqu'à fin dus gestion